
ROAD: Learning an Implicit Recursive Octree Auto-Decoder to Efficiently
Encode 3D Shapes

Sergey Zakharov, Rareş Ambruş, Katherine Liu, Adrien Gaidon

Abstract

Compact and accurate representations of 3D shapes are
central to many perception and robotics tasks. State-of-the-
art learning-based methods can reconstruct single objects
but scale poorly to large datasets. We present a novel re-
cursive implicit representation to efficiently and accurately
encode large datasets of complex 3D shapes by recursively
traversing an implicit octree in latent space. Our implicit
Recursive Octree Auto-Decoder (ROAD) learns a hierar-
chically structured latent space enabling state-of-the-art re-
construction results at a compression ratio above 99%. We
also propose an efficient curriculum learning scheme that
naturally exploits the coarse-to-fine properties of the under-
lying octree spatial representation. We explore the scaling
law relating latent space dimension, dataset size, and re-
construction accuracy, showing that increasing the latent
space dimension is enough to scale to large shape datasets.
Finally, we show that our learned latent space encodes a
coarse-to-fine hierarchical structure yielding reusable la-
tents across different levels of details, and we provide qual-
itative evidence of generalization to novel shapes outside
the training set. Project website: https://zakharos.
github.io/projects/road/

1. Introduction
Accurately and efficiently representing 3D geometry is

a cornerstone capability in computer vision and computer
graphics, with many practical applications in robotics and
artificial intelligence. Decades of research in this area have
produced a myriad of approaches, from traditional explicit
methods [11,16,18,41,42,45,58] to learning-based implicit
representations that encode shapes in the weights of neu-
ral networks and use various learning cues such as Signed
Distance Fields [40, 47, 72], occupancy [30, 41], or radi-
ance [4, 31, 50, 70]. Choosing one representation over an-
other typically involves various tradeoffs between accuracy,
scalability and generalization [3, 56, 62]. Related methods
have either focused on modeling single shapes with increas-
ing levels of accuracy at higher costs in terms of memory
or time [31, 34, 53, 68] or on modeling classes of shapes,

typically with single MLPs, which results in the ability to
generalize to novel shapes as well as adapt to test-time data
via differentiability but at the expense of high-frequency de-
tails [40, 55, 59, 71].

In this paper we address these key challenges through a
novel neural network capable of simultaneously encoding
a large number of shapes to a higher level of accuracy than
previously possible. We build on recent advances which use
neural fields (i.e. neural network parameterizations of con-
tinuous functions defined on Euclidean space) to represent
any topology with arbitrary precision [62] combined with
continuous, generative latent spaces for 3D shape genera-
tion [9, 40]. We aim to recover a compact function which
learns to map complex topologies to an implicit space of
shapes, without sacrificing reconstruction accuracy or dif-
ferentiability. Our key insight is based on the fact that the
neural field paradigm maps spatial coordinates to an encod-
ing of the surface and thus requires thousands of evaluations
to extract the underlying surface; moreover, the underlying
implicit function needs to accurately model space outside
the target geometry [28, 29, 37]. Alternatively, some meth-
ods explicitly define the relationship between an underlying
explicit data structure and the latent space [53,55], thus par-
titioning the implicit function.

To achieve high compression while still being able to
reconstruct high-frequency details, we propose an implicit
Recursive Octree Auto-Decoder (ROAD) formulation that
operates entirely in the latent space and is guided by an
octree partitioning of the space. The octree data structure
provides a simple yet elegant solution for increasing sur-
face detail while traversing down the tree [53, 55, 69], as
well as an intuitive setup for a curriculum learning sched-
ule where learning progresses according to a coarse-to-fine
approach. Our method uses a single neural network to map
a latent vector to eight other latent vectors corresponding to
its eight children in 3-dimensional space; in turn, each of
the predicted latent vectors can be fed back to the network
for further subdivision. To extract a surface, we simply tra-
verse down the tree starting from a single root latent vector,
expanding nodes as needed based on predicted occupancy,
until the desired level of resolution is reached. The output
of a forward pass of our network is the actual surface, and it

https://zakharos.github.io/projects/road/
https://zakharos.github.io/projects/road/

Figure 1. Our implicit Recursive Octree Auto-Decoder, ROAD, can represent many diverse shapes accurately and precisely with a small
memory footprint thanks to recursive decoding of a hierarchically structured learned implicit shape representation.

can be obtained in milliseconds, unlike seconds or minutes
for related methods requiring complex operations.

Our formulation leads to a latent space that captures
shape similarity and hierarchy in a manner that is conducive
to high compression as well generalization to shapes out-
side of the training set. Our efficient implementation leads
to a reduction of up to 99% in terms of storage space com-
pared to the original mesh models; this includes network
weights as well as any other learned features needed for
reconstructing the meshes. Finally, we explore the rela-
tionship between 3D modeling power (as measured by the
Chamfer distance), latent space dimension and dataset size,
and show how to tune our model’s capacity with a single
hyperparameter — the dimension of the latent space.

Our contributions are summarized as follows:

• A novel implicit representation parameterized by a re-
cursive function that encodes an arbitrary number of
3D shapes in a shared latent space, while retaining
high reconstruction fidelity and requiring up to 99%
less storage space compared to the input mesh models;

• A curriculum learning method that naturally exploits
the octree spatial data structure through a coarse-to-
fine optimization scheme;

• An analysis of the scaling law that correlates latent
space dimension, dataset size and 3D reconstruction
accuracy and a qualitative analysis of the learned latent
space indicating a coarse-to-fine hierarchical structure
resulting in reusable latents.

2. Related Work

Neural Fields are continuous coordinate-based neural net-
works that encode an underlying property of a scene. The
popularity of these representations has increased dramati-
cally as recent results have shown that with enough mod-
eling power coordinate-based networks can be used to en-
code underlying physical quantities with arbitrary levels
of precision [31, 40, 62]. Applications of these techniques
include modeling 3D shape [30, 40, 41, 47], appearance /
radiance [4, 31, 50, 70], geometry [64], semantic informa-
tion [25], material properties [5, 15], human shape and ap-
pearance [23], and robotics [2, 10, 38, 46, 66, 67]. Neural
Fields have been used in robotics to represent 3D geom-
etry and appearance with applications in grasping [6, 20],
trajectory planning [2], object pose estimation and refine-
ment [19,21,71,72], object and surface reconstruction from
sparse and noisy data [41,60], multi-modal perception [14],

Figure 2. Our method extracts object surfaces by performing octree traversal. Starting from a latent vector of the parent cell ROAD extracts
latent vectors for all children cells together with their occupancy, local SDF and surface normal estimates. It efficiently extends to large
datasets while retaining high surface reconstruction quality.

localization [32] and SLAM [52, 74]. For an overview of
recent methods and applications please consult [62].

Neural Fields for Shape Representation These methods
represent shapes in the weights of the neural networks, and
vary depending on the underlying signal used to encode
the 3D space, e.g. occupancy [30, 41], Signed Distance
Functions [40, 47, 72], density and radiance [4, 31]. A sec-
ond distinction comes from the target domain, with some
methods overfitting to a single scene/object [31,34,53], and
other methods learning a generalizable prior over entire cat-
egories of shapes, e.g. as a generalizable latent space of
Signed Distance Functions [40, 47, 72], as a convolutional
prior over grid cells [30,41] or image pixels [70], as weights
of a kernel learned from data [26, 59, 61], as an object cen-
tric shape [71] and/or appearance prior [22]. The modeling
power of these methods can be further improved by modu-
lating the input coordinates with period functions [48, 54],
while rendering speed, training time and networks size can
be improved by factorizing the scene tensor into multiple
low-rank components [8], by utilizing multiple small size
MLPs [43], by training on Sparse Voxel Fields [27] or via
multiresolution hash input encoding [34]. A number of
methods employ an octree datastructure to guide learning
towards occupied areas of space [53, 55, 69]. Closest to
our method, NGLOD [53] also uses an octree to adaptively
fit shapes to multiple Levels-of-Detail (LoDs), however un-
like [53] our method can represent multiple shapes. Ad-
ditionally, thanks to our recursive scheme, we only need
to store root level latents and not the entire grid as is the
case for [53]. Recursive parameterizations have also been
employed in the context of radiance fields [65] or for 3D
shape representation [55]. Unlike [55], we use a lightweight
decoder-only recursive architecture to represent high qual-
ity shapes as dense oriented point clouds through which we
can extract the encoded surface in real-time. Its capacity

can be easily extended by simply modifying the size of the
input latent vector and it is capable of storing additional at-
tributes (such as material information) at minimal cost.
Differentiable Rendering refers to the ability to render an
image and back-propagate training signal from the image
back to the underlying representation; for an overview of
latest methods please refer to [24, 57]. This allows 3D rep-
resentations of scenes to be learned using only 2D supervi-
sion [51], generative models of objects [35], composition-
ality [36, 39, 63], learning from data in the wild [17, 33, 44]
or test-time adaptation [72]. However, in the context of
3D shape representation, extracting the underlying surface
from the implicit field typically involves expensive opera-
tions such as volume rendering [29], sphere tracing [28] or
ray marching [37]. Our method maintains differentiabilty
with respect to the input and can thus be optimized given
partial 3D data as well as 2D images and additionally we
output the underlying surface by design, foregoing the need
for expensive operations for surface extraction.

3. Methodology
Preliminaries Our approach takes as input a set of shapes
S = {S1, . . . , SK} and learns a space of implicit surfaces
that represents the input. Each shape SK is represented
by an oriented point cloud consisting of points {pGT

i ∈
R3}|SK |

i=1 and associated normals {nGT
i ∈ R3}|SK |

i=1 , where
|SK | denotes the number of points in SK .

Formulation Our method represents each shape with a
D-dimensional latent vector denoting the root node of an
octree which is traversed recursively, up to a predefined
Level-of-Detail (LoD) M . We seek to regress three func-
tions to recursively reconstruct 3D geometry, parameterized
by neural networks: ϕ : RD → R8D for latent subdivision;
ψ : RD → R5 for mapping the latent space to surface ge-
ometry (occupancy, signed distance to surface, surface nor-

mal); and ξ : R7 → R3 for zero iso-surface projection.
The hyperparameter M , the dimension of the latent space,
is linked to the capacity of our representation as a function
of the dataset size. Given a latent vector zm ∈ RD, where
0 ≤ m ≤ M denotes the LoD of the latent vector, we de-
fine:

ϕ(zm)→ {zm+1
i }8i=1 (1)

as the function that performs a traversal of the latent space
given input latent zm and outputs a latent vector zm+1

i =
⌊ϕ(zm)⌋i for each of the 8 possible children, where ⌊ϕ⌋i
denotes the ith output of ϕ.

By definition, ϕ projects back to the latent space of di-
mension D, i.e. zm+1

i ∈ RD, forcing the resulting latent
to encode both high and low level information. This formu-
lation allows ROAD to simply pass back the resulting la-
tent to our recursive function, i.e. through ϕ(zm+1), while
propagating coarser, higher-level information along the la-
tent space. A latent z0 at the lowest LoD therefore encodes
the geometry of an entire object. Unlike other octree-based
methods [53] that store all the octree latents, our formula-
tion allows us to record only the root level latents for each
input shape, i.e. Z0 = {z0

k}Kk=0. We provide ablations for
other formulations of ϕ in Section 4.

We employ ψ to map any latent vector to underlying sur-
face geometry as follows:

ψ(zm) = {om, sm,nm} (2)

The output ofψ consists of om ∈ (0, 1) — the occupancy
estimate denoting whether to continue expanding this cell
further; sm ∈ (−1, 1) — the constrained signed distance
value from the center of the cell to the surface of the object;
and nm ∈ R3 — the surface normal vector. To extract the
surface information at a particular LoD m starting from a
root latent z0 we perform a tree traversal as follows:

ψ(ϕ(. . . (ϕ︸ ︷︷ ︸
m times

(z0))) = {om, sm,nm} (3)

Figure 3. ROAD enables surface points to be directly extracted at
different levels of detail.

Note that for clarity we omitted the notation ⌊·⌋ in Eq.3,
however after each subdivision the appropriate child latent
is selected, according to the desired branch of the octree
to be expanded. We highlight that unlike other SDF based
methods that implicitly encode surfaces [40], our method
does not take as input Euclidean coordinates, and the map-
ping between different LoD levels is achieved entirely via
the learned latents zm → zm+1 which are forced to en-
code both local structure as well as global shape informa-
tion. Moreover, unlike grid-based representations [30, 41]
we fully exploit the sparse nature of the underlying octree
representation, using the occupancy oi to recursively ex-
pand only occupied cells.

Shape Recovery To recover the final shape, we perform
the zero-isosurface projection (see Fig. 4), using distance
si, surface normal estimates ni, and voxel cell center coor-
dinates xi at the desired LoD. The voxel centers are deter-
mined and tracked whenever we subdivide a cell. To extract
the object surface at LoDm, we use the following equation:
pm
i = ξ(xm

i , s
m
i ,n

m
i) = xm

i − αmnm
i s

m
i , where αm is a

value that scales sm. In our experiments we use a scaling
factor equal to the voxel size at LoD m, i.e. αm = 2/(2m).
Once the projection is performed for all the query points at
a particular LoD, we get a dense surface point cloud that
is differentiable back to the input latent vector z0. This
property allows us to perform optimization to complete par-
tial shapes based on the prior encapsulated in the network.
An overview of our complete pipeline is provided in Algo-
rithm 1.

Architecture and Training We parameterize the func-
tions ϕ, ψ with a single MLP with parameters θ, choosing
a SIREN-based [49] network as periodic activation func-
tions have been shown to be more capable at representing
fine details. Our MLP uses a single layer encoder and mul-
tiple 2-layer decoder heads to output occupancy o, SDF s,
surface normals n. All hidden layers are 512-dimensional.
We train our method by optimizing both the latent vectors
Z and the parameters θ of the MLP using the Adam solver

Figure 4. Zero-isosurface projection.

Figure 5. Latent space structure. We use principle component analysis to visualize the encoded geometries of the ShapeNet150 dataset
in two dimensions. Object color is related to object instance, with objects of the same class having similar colors, and is carried through
each LoD. For visualization purposes, grey objects in LoD 0 are not propagated to the higher LoDs. Similar latent vectors encode similar
geometries resulting in a clear class separation at LoD 0. Similar areas of the projected latent space become increasingly shared by
the different classes at higher LoDs, suggesting that our approach efficiently encodes object geometry by learning common geometric
primitives.

with a learning rate of 6× 10−5.
To supervise training, we define losses for each of the

decoder levels at every LoD. Occupancy loss Lo as a bi-
nary cross entropy, whereas SDF Ls and surface normals
Ln losses minimize the l2 distance between respective pre-
dictions and ground truth values. The final loss is formu-
lated as:

L =
∑
m∈M

woLm
o + wm

s Lm
s + wnLm

n , (4)

Algorithm 1: Octree-based recursive surface ex-
traction

Input: M maximum recursion depth, Z0 = {z0}
object latent vector

Output: p ∈ R3 surface points,
/* Recursively subdivide voxels

until desired LoD is reached */
1 for m ∈ {1, . . . ,M} do
2 Zm ← {}
3 for zm−1 in Zm−1 do
4 {zm

i , o
m
i , s

m
i ,n

m
i }8i=1 ← ROAD(zm−1) ;

// recursive subdivision
5 Zm ← Zm ∪ {zm

i |omi ≥ θ} ; // add
occupied latents

6 end
7 end
/* Extract object shape */

8 for zm in Zm do
9 p← p ∪ ξ(ROAD(zm))

10 end
11 return p

where wo = 1, wd
s is a function returning an inverse voxel

radius for level m, and wv = 0.1.

Curriculum Learning When it comes to training on
large datasets or on datasets with high resolution models
requiring high LoDs, the vanilla training procedure requires
much more time to converge as opposed to training on sim-
pler datasets. To alleviate this problem we introduce a cur-
riculum training procedure. Instead of initiating training
from the desired final LoD, we change the first LoD to be
lower (we use LoD 3 in our experiments) and keep track
of the mean of predicted occupancy confidences at a given
level m. Lower LoDs are faster to train on due to a smaller
number of latents to optimize. Moreover, it makes it faster
to sample random training points at each iteration, thus fur-
ther accelerating the training procedure. To compute our
confidence score, we first take a softmax over two occu-
pancy values for all estimated voxels at a given LoD, and
then take a max value between all the pairs. If our aver-
age confidence θ is high enough in either occupancy or non
occupancy, we jump to the next LoD and repeat this pro-
cedure until the final LoD is reached. In our experiments,
we show that this simple technique helps to accelerate the
training process especially when training on large and high
resolution datasets. We set θ = 0.95 in our experiments.

4. Experiments
To demonstrate the 3D reconstruction and compres-

sion capabilities of our approach we run a number of ex-
periments on the ShapeNet [7], Thingi10K [73], Google
Scanned Objects [13], and the AccuCities [1] datasets. We
report reconstruction metrics as measured by the Chamfer
distance (multiplied by 103) as well as interesection over

Method
ShapeNet150 Thingi32

Storage (MB) (↓) gIoU (↑) Chamfer (↓) Storage (MB) (↓) gIoU (↑) Chamfer (↓)
DeepSDF [40] 1052.6 86.9 0.316 224.6 96.8 0.053

FFN [54] 301.6 88.5 0.077 64.3 97.7 0.033
SIREN [49] 151.3 78.4 0.381 32.3 95.1 0.077

Neural Implicits [12] 4.4 82.2 0.500 0.9 96.0 0.092
NGLOD [53] 185.4 91.7 0.062 39.6 99.4 0.027

Ours / LoD6

3.8

86.3 0.175

3.2

96.4 0.138
Ours / LoD7 94.2 0.067 98.4 0.045
Ours / LoD8 94.9 0.041 98.7 0.022
Ours / LoD9 94.9 0.036 98.7 0.017

Table 1. Shape Reconstruction. This table shows reconstruction and compression comparisons against two datasets. As opposed to the
baselines, our method trains a single model for the entire dataset, while still outperforming them in terms of reconstruction quality.

union over points uniformly sampled in the bounding vol-
ume of the ground truth shape.

Reconstruction We follow the protocol of [53] and train
on a subset of 150 objects from ShapeNet [7] and a subset
of 32 objects from Thingi10K [73]. We report results in
Table 1. We note that the baselines we compare against
train one model for each shape in the dataset (i.e. [53]
trains 32 networks for each object in Thingi32). Owing
to the efficient recursive decoding scheme implemented by
our method, we can train a single model for each dataset
and still be competitive in terms of network size and re-
construction accuracy. We set the latent size D to 64 for
Thingi32 and to 96 for ShapeNet150 respectively. Indeed,
our network achieves state-of-the-art reconstruction results
of 0.036 Chamfer distance and an IoU of more than 94% on
ShapeNet150 with a network of size 3.8MB: this amounts
to a compression of more than 99%, as the original mesh
dataset measures 630MB. We report a similar compression

Figure 6. Chamfer distance vs data quantity for different latent
vector sizes.

ratio on Thingi32 (473MB) while achieving state-of-the-art
reconstruction accuracy of 0.017 Chamfer distance and a
competitive IoU of 98.7%.

We further explore the reconstruction capabilities of
our method by encoding a model from the AccuCities [1]
dataset: a neighborhood from London consisting of 1.9 mil-
lion triangles and requiring 252MB of disk space. We set
the latent size D to 512. Qualitative results are shown in
Fig.1 with additional images in the supplementary. Quanti-
tatively we achieve a Chamfer distance of 0.04 when com-
paring against the ground truth model, while using a net-
work of size 11 MB.

Scaling to larger datasets For this experiment we use the
entire Google Scanned Objects [13] dataset consisting of a

Figure 7. Generalization. We demonstrate our method’s increas-
ing generalization ability when trained on many objects.

Superposition Storage (MB) gIoU Chamfer

Direct 3.2 98.7 0.017
Addition 3.2 96.9 0.039

Concatenation 17.9 99.4 0.013

Table 2. Latent Fusion. Here we compare different ways to prop-
agate latent vectors to the next LoDs.

total of 1030 object models. We introduce training splits of
different sizes (32, 128, 256, 512, 1030) to study the relation
between the dataset complexity and the latent vector size, a
novel hyperparameter specific to our formulation. We re-
strict our analysis into the scaling properties of our network
to the dimension of the latent space, and mention that other
methods that are generally applicable to machine learning
models (i.e. number of layers, training schedule, etc.) can
be used to further tweak the performance of our method.
Our results are recorded in Fig. 6: for each split we train
networks with increasing latent vector sizes (64, 128, 256,
512) and record the resulting Chamfer distance by compar-
ing the reconstructed models with the ground truth models
of that specific split. We note a strong correlation between
dataset complexity and latent size. Specifically, our results
indicate that our method can efficiently scale to an increas-
ing number of shapes by only modifying the latent vector
size while keeping the network parameterization intact.

Latent Space Analysis To qualitatively analyze the prop-
erties of the learned latent space, we project the latent space
at specific LoDs into two dimensions via principle com-
ponent analysis to visualize the encoded geometries of the
ShapeNet dataset, as shown in Fig. 5.

We observe that objects of the same class are spatially
close in the projected space at the top level LoD, demon-
strating that similar latent vectors encode similar geome-
tries. Furthermore, at higher LoDs, similar areas of the
projected latent space are increasingly shared by the differ-
ent classes, suggesting that our approach efficiently encodes
object geometry by learning geometric primitives common
in the dataset.

We also visualize the nearest neighbors of specific latent
vectors from the network trained on Thingi32 to LoD 9 in
Fig. 8. We show that similar latent vectors can represent
the local geometry at different object coordinates, without
explicit positional encoding. Increasing the LoD also intu-
itively reduces the geometric complexity represented by the
latent, as seen by the 3D edge feature from LoD 2 and the
oriented patch feature from LoD 4.

Generalization In this experiment we demonstrate the
generalization capabilities of our method. We take four net-
works from the data compression experiment each trained

Surface density Low Medium High

Sphere tracing 5 min 6 min 10 min
Marching cubes 0.1 s 0.9 s 6 s

Ours 11 ms 13 ms 17 ms

Table 3. Inference time. Our method extracts object surfaces in
real time, significantly outperforming the state of the art.

on a different split of the Google Scanned Objects dataset
(32, 128, 256, and 512 objects) and optimize latent vectors
to fit unseen models from the same as well as other datasets
(Thingi32, ShapeNet150) while keeping network weights
frozen. The results are shown in Fig. 7. Reconstruction
quality plotted in terms of Chamfer distance shows increas-
ing generalization capability for networks trained on more
models.

Surface Extraction By design, our method differentiably
extracts object surfaces in real time with minimal memory
overheads. In comparison, NGLOD [53] or other SDF-
based [40] methods require either an expensive sphere ray
tracing or non-differentiable marching cubes to extract sur-
face. Table 3 compares inference times when extracting
the object surface at different levels of density. For our
method we perform inference up to LoDs 6, 7 and 8 respec-
tively, which corresponds to approximately 20000, 80000
and 300000 surface points, respectively for the Thingi32
models. We compare against a marching cubes baseline
from [40] and a sphere tracing baseline from [53], and we it-
erate until the desired number of surface points is sampled.
For a fair comparison with our method we extract 20000,
80000 and 300000 using both sphere tracing and march-
ing cubes. We note that our method extracts the object sur-
face up to 3 orders of magnitude faster that the sphere trac-
ing baseline; our method requires a total of 1-2 seconds to
extract object surfaces for the entire ShapeNet150 dataset.
The marching cubes baseline, while faster than sphere trac-
ing, is still not real-time capable and not differentiable. Fi-
nally, we observe that the results for this experiment were
obtained on a single A6000 GPU, without any optimization.

Latent Vector Fusion As described in Section 3 and in
Fig. 2, our method propagates information through the la-
tent space via the recursive function ϕ (see Eq.1). Here
we explore different forms of latent subdivision: addition
and concatenation, with the complete definitions provided
in the supplementary. While addition does not change the
dimension of the latent vector D, it explicitly defines how
information is propagated from parent to child latent (i.e.
via addition). Conversely, concatenation makes D increase
with each recursion level, and information is directly copied
as we traverse the latent space. This introduces significant

Figure 8. Nearest neighbors. We visualize the geometry encoded by example latents, as well as the geometry encoded by the nearest
neighbors within the same LoD across all objects in the Thingi32 dataset, determined by the Euclidean distance metric on the latent vector
space (top row). We color the points in the octree cell corresponding to the latent, showing that our approach enables latents with similar
shapes to be used at different global positions (bottom row).

modifications to the underlying neural network architecture,
requiring specialized networks at each LoD. The results of
this ablative analysis are summarized in Table 2. As ex-
pected, contcatenation serves as an upper bound for perfor-
mance and it achieves the highest performance but requires
5× more storage space, and a more complicated formula-
tion. Although similar in formuation to direct regression,
the addition version of our method achieves poor results,
which we attribute to the artificial constraint imposed on
how information is propagated through the latent space.

5. Discussion

Limitations and Future Work Our representation cur-
rently only supports 3D geometry. For future work, we
would like to explore its extension to other modalities (ob-
ject color and material properties) as well as representations
(images and radiance fields [31]). Another interesting direc-
tion that could be explored is a combination of our pipeline
with different downstream tasks (object detection and pose
estimation). Our representaton is fully differentiable and
thus allows the propagation of useful 3D gradients for shape
optimization given partial information.

Conclusion We presented a novel recursive implicit rep-
resentation to effectively represent and compress 3D geom-
etry by framing it as the traversal of an implicit octree in a
learned latent space. It extracts geometry in real-time and
scales to large datasets while retaining high reconstruction
quality. As a result, we outperform state-of-the-art recon-
struction results on the ShapeNet150 and Thingi32 datasets,
even when compared to methods training a single network
per model. Our analysis of the representation explores the
structure of the latent space and presents a scaling law defin-
ing a relationship between latent space dimension, dataset
size and reconstruction accuracy.

References
[1] 3d model of london and city models. https://www.

accucities.com/. Accessed: 2022-05-18. 5, 6
[2] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,

Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-only robot navigation in a neural ra-
diance world. RA-L, 2022. 2

[3] Eman Ahmed, Alexandre Saint, Abd El Rahman Shabayek,
Kseniya Cherenkova, Rig Das, Gleb Gusev, Djamila
Aouada, and Bjorn Ottersten. A survey on deep learning
advances on different 3d data representations. arXiv, 2018.
1

[4] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, 2021. 1, 2, 3

[5] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-
ron, Ce Liu, and Hendrik Lensch. Nerd: Neural reflectance
decomposition from image collections. In ICCV, 2021. 2

[6] Michel Breyer, Jen Jen Chung, Lionel Ott, Siegwart Roland,
and Nieto Juan. Volumetric grasping network: Real-time 6
dof grasp detection in clutter. In CoRL, 2020. 2

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, et al. ShapeNet: An
information-rich 3d model repository. arXiv, 2015. 5, 6

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv, 2022. 3

[9] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 1

[10] Kashyap Chitta, Aditya Prakash, and Andreas Geiger. Neat:
Neural attention fields for end-to-end autonomous driving.
In ICCV, 2021. 2

[11] Brian Curless and Marc Levoy. A volumetric method for
building complex models from range images. In SIG-
GRAPH, 1996. 1

[12] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.
Overfit neural networks as a compact shape representation.
arXiv, 2020. 6

https://www.accucities.com/
https://www.accucities.com/

[13] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google scanned objects: A high-
quality dataset of 3d scanned household items. arXiv, 2022.
5, 6

[14] Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and
Jiajun Wu. Objectfolder: A dataset of objects with implicit
visual, auditory, and tactile representations. In CoRL, 2021.
2

[15] Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. Neu-
ral radiosity. TOG, 2021. 2

[16] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. TOG, 2019. 1

[17] Philipp Henzler, Jeremy Reizenstein, Patrick Labatut, Ro-
man Shapovalov, Tobias Ritschel, Andrea Vedaldi, and
David Novotny. Unsupervised learning of 3d object cate-
gories from videos in the wild. In CVPR, 2021. 3

[18] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. Octomap: An efficient
probabilistic 3d mapping framework based on octrees. Au-
tonomous robots, 2013. 1

[19] Lin Huang, Tomas Hodan, Lingni Ma, Linguang Zhang,
Luan Tran, Christopher Twigg, Po-Chen Wu, Junsong Yuan,
Cem Keskin, and Robert Wang. Neural correspondence field
for object pose estimation. ECCV, 2022. 2

[20] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and Ken Gold-
berg. Dex-nerf: Using a neural radiance field to grasp trans-
parent objects. In CoRL, 2021. 2

[21] Muhammad Zubair Irshad, Sergey Zakharov, Rares Ambrus,
Thomas Kollar, Zsolt Kira, and Adrien Gaidon. Shapo: Im-
plicit representations for multi-object shape, appearance, and
pose optimization. In ECCV, 2022. 2

[22] Wonbong Jang and Lourdes Agapito. Codenerf: Disentan-
gled neural radiance fields for object categories. In ICCV,
2021. 3

[23] Wei Jiang, Kwang Moo Yi, Golnoosh Samei, Oncel Tuzel,
and Anurag Ranjan. Neuman: Neural human radiance field
from a single video. arXiv, 2022. 2

[24] Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando,
Toru Matsuoka, Wadim Kehl, and Adrien Gaidon. Differen-
tiable rendering: A survey. arXiv, 2020. 3

[25] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi,
Caroline Pantofaru, Leonidas Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic neural
fields: A semantic object-aware neural scene representation.
arXiv, 2022. 2

[26] Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja
Fidler, and Or Litany. Learning smooth neural functions via
lipschitz regularization. arXiv, 2022. 3

[27] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 3

[28] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In CVPR, 2020. 1, 3

[29] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv, 2019. 1, 3

[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR,
2019. 1, 2, 3, 4

[31] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3, 8

[32] Arthur Moreau, Nathan Piasco, Dzmitry Tsishkou, Bogdan
Stanciulescu, and Arnaud de La Fortelle. Lens: Localization
enhanced by nerf synthesis. In CoRL, 2022. 3

[33] Norman Müller, Andrea Simonelli, Lorenzo Porzi,
Samuel Rota Bulò, Matthias Nießner, and Peter
Kontschieder. Autorf: Learning 3d object radiance
fields from single view observations. arXiv, 2022. 3

[34] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. arXiv, 2022. 1, 3

[35] Siva Karthik Mustikovela, Shalini De Mello, Aayush
Prakash, Umar Iqbal, Sifei Liu, Thu Nguyen-Phuoc, Carsten
Rother, and Jan Kautz. Self-supervised object detection via
generative image synthesis. In ICCV, 2021. 3

[36] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In CVPR, 2021. 3

[37] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, 2020. 1, 3

[38] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar,
David Novotny, Michael Zollhoefer, and Mustafa Mukadam.
isdf: Real-time neural signed distance fields for robot per-
ception. arXiv, 2022. 2

[39] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
CVPR, 2021. 3

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019. 1, 2, 3, 4, 6, 7

[41] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In ECCV, 2020. 1, 2, 3, 4

[42] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017. 1

[43] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 3

[44] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction. In ICCV, 2021. 3

[45] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point
cloud library (pcl). In ICRA, 2011. 1

[46] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi,
Joshua B Tenenbaum, Alberto Rodriguez, Pulkit Agrawal,
and Vincent Sitzmann. Neural descriptor fields: Se (3)-
equivariant object representations for manipulation. In ICRA,
2022. 2

[47] Vincent Sitzmann, Eric Chan, Richard Tucker, Noah
Snavely, and Gordon Wetzstein. Metasdf: Meta-learning
signed distance functions. NeurIPS, 2020. 1, 2, 3

[48] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. NeurIPS, 2020. 3

[49] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Proc. NeurIPS, 2020. 4, 6

[50] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neu-
ral scene representations with single-evaluation rendering.
NeurIPS, 2021. 1, 2

[51] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. NeurIPS,
2019. 3

[52] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davi-
son. imap: Implicit mapping and positioning in real-time. In
ICCV, 2021. 3

[53] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. In
CVPR, 2021. 1, 3, 4, 6, 7

[54] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. NeurIPS, 2020. 3, 6

[55] Jia-Heng Tang, Weikai Chen, Jie Yang, Bo Wang, Songrun
Liu, Bo Yang, and Lin Gao. Octfield: Hierarchical implicit
functions for 3d modeling. arXiv, 2021. 1, 3

[56] Johan WH Tangelder and Remco C Veltkamp. A survey of
content based 3d shape retrieval methods. Multimedia tools
and applications, 2008. 1

[57] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edgar Tretschk, Yifan Wang, Christoph Lassner, Vin-
cent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. Advances in neural rendering. arXiv, 2021. 3

[58] Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno,
Ben Glocker, and Andrew Davison. Elasticfusion: Dense
slam without a pose graph. Robotics: Science and Systems,
2015. 1

[59] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin,
Joan Bruna, Sanja Fidler, and Or Litany. Neural fields as
learnable kernels for 3d reconstruction. arXiv, 2021. 1, 3

[60] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin,
Joan Bruna, Sanja Fidler, and Or Litany. Neural fields as
learnable kernels for 3d reconstruction. In CVPR, 2022. 2

[61] Francis Williams, Matthew Trager, Joan Bruna, and Denis
Zorin. Neural splines: Fitting 3d surfaces with infinitely-
wide neural networks. In CVPR, 2021. 3

[62] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. arXiv, 2021. 1, 2, 3

[63] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In ICCV, 2021. 3

[64] Guandao Yang, Serge Belongie, Bharath Hariharan, and
Vladlen Koltun. Geometry processing with neural fields.
NeurIPS, 2021. 2

[65] Guo-Wei Yang, Wen-Yang Zhou, Hao-Yang Peng, Dun
Liang, Tai-Jiang Mu, and Shi-Min Hu. Recursive-nerf: An
efficient and dynamically growing nerf. arXiv, 2021. 3

[66] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Tsung-Yi
Lin, Alberto Rodriguez, and Phillip Isola. Nerf-supervision:
Learning dense object descriptors from neural radiance
fields. arXiv, 2022. 2

[67] Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: Inverting
neural radiance fields for pose estimation. In IROS, 2021. 2

[68] Wang Yifan, Lukas Rahmann, and Olga Sorkine-Hornung.
Geometry-consistent neural shape representation with im-
plicit displacement fields. arXiv, 2021. 1

[69] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 3

[70] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
CVPR, 2021. 1, 2, 3

[71] Sergey Zakharov, Rares Andrei Ambrus, Vitor Campag-
nolo Guizilini, Dennis Park, Wadim Kehl, Fredo Durand,
Joshua B Tenenbaum, Vincent Sitzmann, Jiajun Wu, and
Adrien Gaidon. Single-shot scene reconstruction. In CoRL,
2021. 1, 2, 3

[72] Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and Adrien
Gaidon. Autolabeling 3d objects with differentiable render-
ing of sdf shape priors. In CVPR, 2020. 1, 2, 3

[73] Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of
10,000 3d-printing models. arXiv, 2016. 5, 6

[74] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In CVPR, 2022. 3

	. Introduction
	. Related Work
	. Methodology
	. Experiments
	. Discussion

